

Review Paper:

Snake venom: An emerging anticancer agent

Jhade Sandeep Kumar, Gupta Ayushi and Shrivastava Rahul*

Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering,
Maulana Azad National Institute of Technology (MANIT), Bhopal, 462003, INDIA

*shrivastavarm1972@gmail.com

Abstract

Snake venom consists of different proteins, enzymes, carbohydrates and other bioactive molecules. They are highly toxic in nature and have been recognized for their lethal effects for a long back. However recent studies have revealed the enormous therapeutic potential of snake venom. The crude venom and its enzymatic components including PLA2, SVMP, SVSP, Lectin, LAAO and disintegrin, exhibit anticancer activity through cell lysis, gene expression modulation, cytotoxicity and apoptosis.

This review discusses the anticancer properties of various components of snake venom. Although venom isolation, purification and safety concerns are a challenge, ongoing research shows that snake venom holds great promise for the development of innovative and effective anticancer treatments, requiring further research and clinical trials to combat this disease.

Keywords: Snake venom, Anticancer agent, Cancer therapy, Cytotoxicity.

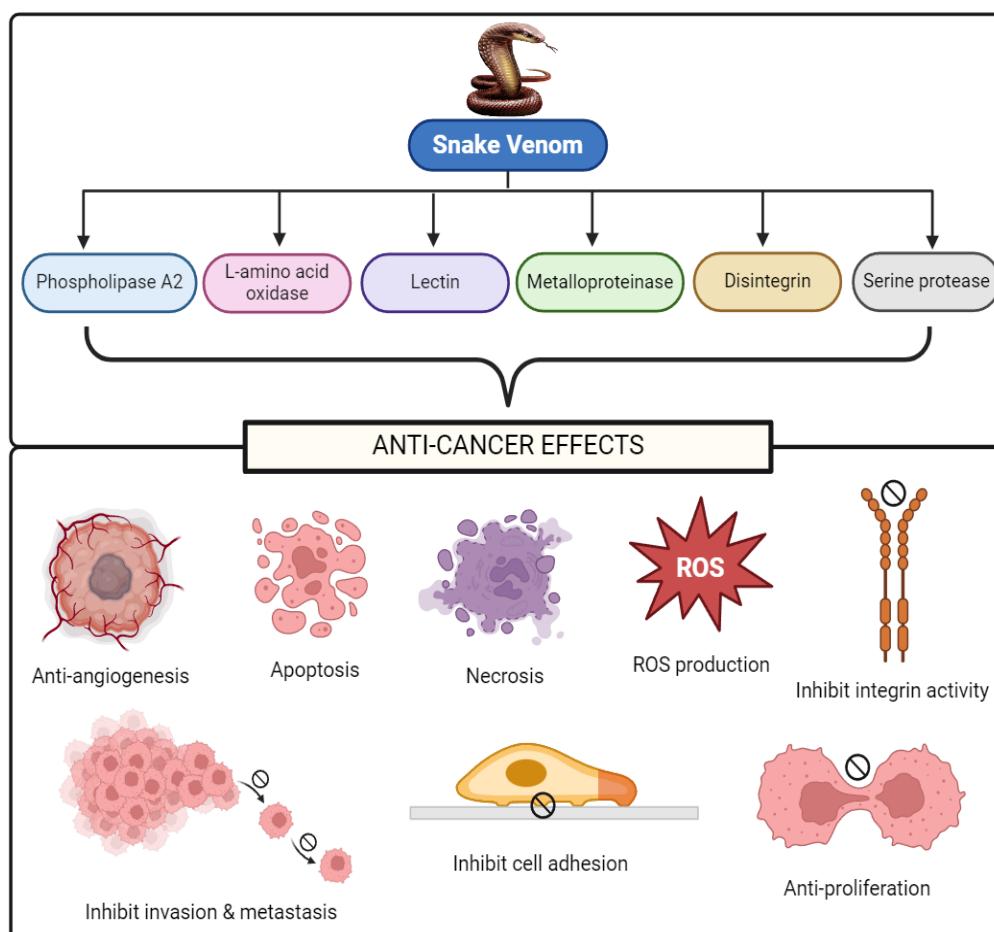
Introduction

Cancer is considered to be the world's most alarming disease, spreading exponentially as one of the leading causes of mortality and morbidity globally⁴⁸. GLOBOCAN statistics estimate that around 19.3 million cancer cases were diagnosed and 10.0 million deaths occurred worldwide in 2022. Chemotherapy, radiation therapy and surgery are the most commonly used treatments for cancer. An early-stage diagnosed cancer can be curable as small tumors can be easily removed surgically or can shrink in response to radiation and chemotherapy. In surgery, the affected area is surgically removed and, in many cases, for common solid tumors, it is the only curative therapy.

In chemotherapy, the cytotoxic agents are administered orally and intravenously or in combination and those agents result in cytotoxicity of diving and resting cells. Radiation therapy mainly slows down the growth of cancer cells by damaging their DNA or it directly kills the cancer cells (takes days or weeks).

Apart from these methods, there are other conventional methods used for the treatment of cancer which include transplantation (bone marrow and peripheral stem cell), immunotherapy, hormone therapy, gene therapy, photodynamic therapy and cryosurgery. The main objective

is to prevent cancer cells from invading, metastasizing, multiplying and killing people⁷⁰. This review highlights the studies reporting snake venom as a noble source of anticancer compounds. Apart from the existing methods, the advent of natural as well as synthetic anticancer compounds has made an effective contribution to cancer management.


Snake venom is a secretion of venomous snakes which consists of different peptides, enzymes, proteins, minerals, carbohydrates and other bioactive molecules. It is a translucent, viscous liquid that can be crystallized by drying. To debilitate and digest their prey, snakes inject their venom via unique fangs into the prey³⁶. It is believed that ingestion of snake venom will cause no harm until injected into the blood⁸⁶.

Two core components present in snake venom are non-enzymatic and enzymatic. Non-enzymatic components include three finger toxins (3FTx), disintegrin (DIS), Kunitz-type serine proteinase inhibitor (KSPI), defensin (DEF), cysteine-rich secretory proteins (CRISP), C-type lectins (CTL) and natriuretic peptides (NPs). Enzymatic components comprise of L-amino acid oxidase (LAAO), phospholipase A2 (PLA2), snake venom metalloproteinase (SVMP), snake venom serine protease (SVSP), hyaluronidase, 5'-nucleotidase and acetylcholinesterase⁶³. Both enzymatic and non-enzymatic components are reported for their anticancer activity (Table 1).

Also, snake venoms are a vital nominee for the development of novel medicinal agents for many diseases and disorders due to their biodiversity and therapeutic potency^{28,31}. So far, many toxins of snake venom have been investigated to treat cancer, thrombosis, arthritis, pain, multiple sclerosis, neuromuscular disorders, cardiovascular and blood disorders, infections and inflammatory diseases and hypertension^{55,77}.

Anticancer properties of snake venom

Conventional cancer treatments like radiotherapy and chemotherapy are intended to kill cancer cells in large numbers but lack specificity, so they are invariably accompanied by side effects. Cancer cells may develop resistance to chemotherapeutic therapies, which would complicate matters further. Therefore, the goal of anticancer drug discovery has been to find a powerful, non-resistant molecule that is particular to cancer. Numerous publications have explored how snake venom and its various components promotes apoptosis, necrosis, ROS generation and inhibit angiogenesis, cell adhesion, invasion and metastasis in order to decrease cell growth and encourage cell death (Figure 1).

Figure 1: Various component of snake venom addresses significant anticancer effects.

In this situation, proteins from snake venom are attractive candidates for new anticancer drugs. Most mammalian cells respond to the pharmacologically active proteins and peptides of snake venom²⁰. Tumor cells are significantly more affected by alteration in cellular metabolism as a result of snake venom cytotoxicity⁷⁷. Claude Bernard, the pioneer of physiology was the first person to recognize the medicinal properties of snake venom. In the 1930s, the first accounts of snake venom to treat cancer came into light.

Since then, several studies have been published that describe the functions, isolations, purifications and structural elucidations of the constituents of snake venom. The thorough structural and functional analysis of snake venoms would aid in the creation of brand-new anticancer medications.

Early research on the suppressive effect of simple snake venoms on tumor cells produced dubious results. Pain alleviation for patients with terminally malignant tumors was the primary clinical outcome of the mixture made from snake venom⁴⁸. Modern high throughput screening technologies have made it possible to identify and isolate novel therapeutic compounds from biotoxins like the snake venoms that have demonstrated potential for fighting against cancer. Growing knowledge of molecular mechanisms is helping in this direction as well. Numerous studies have

examined the tumor-suppressing effect of snake venoms and several of them are currently undergoing phase I and phase II clinical trials⁷⁷.

Molecular Aspects of snake venom: The components of snake venom encourage cell death and prevent cell multiplication. Snake venom acts on mammalian cancer cells via various pathways by causing cell membrane damage, increasing calcium ion influx, altering the expression of proteins that regulate the cell cycle, causing cytochrome C release, inhibiting the synthesis of nucleic acids to prevent cell proliferation, preventing thrombin-induced metastasis, inhibiting platelet action to prevent fibrin formation and inducing cancer cell apoptosis to control tumor size⁷⁷.

As mentioned in figure 2, some other mechanisms of action are: ROS- dependent DNA damage (mainly by LAAO and PLA2), extracellular matrix-integrin signalling blockade (mainly by SVMP, disintegrin and C- type lectin), prevention of cancer cell invasion, migration and proliferation (mainly by LAAO, C-type lectin, Phospholipase A2, disintegrin and snake venom metalloprotease) and apoptosis activation via intrinsic or extrinsic pathways (mainly by PLA2 and LAAO)¹³. The anticancer activity of crude venom and its components, reported in recent years is mentioned in table 1.

Table 1
Anticancer properties of different components of venom and their mechanism

S.N.	Venom Component	Enzymatic/ Non-enzymatic	Snake species	Cancer type	Anticancer mechanism
1.	Phospholipase A2	Enzymatic	<i>Crotalus durissus terrificus</i>	Oral	Antineoplastic effect ²⁴
				Breast	Apoptosis ³
			<i>Bothrops Moojeni</i>	Colon, Mucoepidermoid	Cytotoxicity ³³
			<i>Bothrops jararacussu</i>	Breast	Antitumor and antimetastatic effects ²⁷
			<i>Bungarus fasciatus</i>	Breast, Lung	Cytotoxicity ⁸⁵
			<i>Bothrops jararaca</i>	Promyelocytic leukemia, liver	Cytotoxicity ¹⁸
2.	L- amino acid oxidase	Enzymatic	<i>Bothrops pauloensis</i>	Breast	Apoptosis ⁷
			<i>Crotalus adamanteus</i>	Ovarian	H_2O_2 mediated cytotoxicity ⁸⁷
			<i>Crotalus adamanteus</i>	Colon	Cytotoxic and pro-apoptotic activity ⁶²
			<i>Bothrops moojeni</i>	Leukemia	ROS production, apoptosis and differential DNA methylation ¹⁴
			<i>Bothrops jararacussu</i>	Liver	Cytotoxic, genotoxic and induce oxidative stress ⁵²
			<i>Bothrops jararacussu</i>	Breast	Cytotoxicity and apoptosis ¹⁷
			<i>Cerastes vipera</i>	Liver, Lung, Colon, Prostate, Breast	Antiproliferative and cytotoxic effect ⁷¹
3.	Lectin	Non-enzymatic	<i>Calloselasma rhodostoma</i>	Leukemia	Apoptosis ²³
			<i>Macroviperalebetina</i>	Melanoma	Inhibit cell adhesion, migration and invasion ⁴¹
			<i>Daboia russelii</i>	Lung	Induces cytoskeletal damage and apoptosis ⁶⁵
			<i>Bothrops leucurus</i>	Melanoma	Cell death by necrosis ⁶
			<i>Macroviperalebetina</i>	Fibrosarcoma, Melanoma, Colon, Leukemia, Ovarian	Inhibits adhesion, migration, invasion and angiogenesis of tumor cells ⁷⁴
			<i>Bothrops jararacussu</i>	Breast, Ovarian	Inhibits tumor cell and endothelial cell growth ²⁶
4.	Metalloproteina se	Enzymatic	<i>Bothrops leucurus</i>	Malignant glioblastoma, Mammary carcinoma	Cytotoxicity ³⁴
			<i>Bothrops jararaca</i>	Melanoma	Cytotoxicity ²²
			<i>Crotalus viridis</i>	Osteosarcoma	Detachment of cell ⁴⁹
5.	Disintegrin	Non-enzymatic	<i>Crotalus durissus collilineatus</i>	Breast	Cell migration inhibition ⁶⁴
			<i>Macroviperalebetina</i>	Melanoma	Apoptosis ⁴⁰
			<i>Crotalus viridis viridis</i>	Urinary bladder, Fibrosarcoma, Skin melanoma, Colon, Breast	Anti-metastatic activity ⁵⁰
			<i>Crotalus scutulatus scutulatus</i>	Urinary bladder, Skin	Inhibits cell adhesion and migration ⁵¹
			<i>Bothrops colombiensis</i>	Urinary bladder carcinoma, Melanoma	Inhibits cell adhesion and migration ⁷²
6.	Serine protease	Enzymatic	<i>Crotalus durissus collilineatus</i>	Breast, Liver	Inhibits ion channel ¹²
7.	Crude	Enzymatic and Non-enzymatic	<i>Bitis arietans, Cerastes gasperetti, Echis coloratus, Echis pyramidum</i>	Ileocecal, Breast	ROS mediated apoptosis ²
			<i>Naja haje</i>	Hepatocellular	Inhibits proliferation ⁴⁷
			<i>Viperaraddeikurdistanica</i>	Breast	ROS mediated apoptosis ⁵³

	<i>Pseudocerastespersicus</i>	Lung	Caspase dependent apoptosis ⁷⁶
	<i>Viperalatifii</i>	Liver	Apoptosis ⁵⁹
	<i>Ophiophagus hannah</i>	Pancreatic	Inhibits angiogenesis ⁴⁶
	<i>Naja najaoxiana</i>	Breast, Hepatocellular, Prostate	Apoptosis ³¹
	<i>Montiviperaxanthina</i>	Colon, Breast, Osteoblastic, Osteosarcoma	Cytotoxicity ⁸⁸
	<i>Walterinnesiaaegyptia</i>	Breast	Apoptosis ⁴
	<i>Viperalebetinaturanica</i>	Ovarian	Apoptosis ⁷⁹

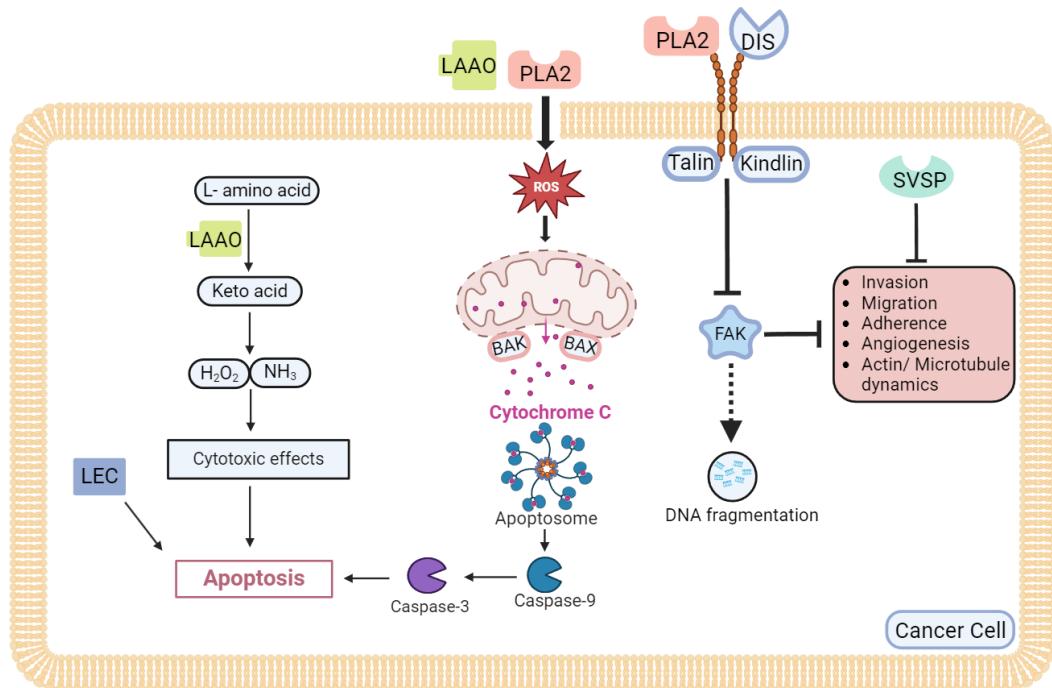


Figure 2: Mechanism occurring during snake venom toxin-mediated anticancer effect.

Phospholipase A2 (PLA2): Phospholipase A2 is a lipid digesting enzyme involved in inflammatory human diseases and also the major component in some snake envenomation and has a key role in lipid membrane metabolism and in diet lipid catabolism⁷⁸. It produces a product from hydrolysis, arachidonic acid, which displays prominent biological activities³⁹. PLA2 has 14 cysteine residues which together form 7 disulfide linkages and 120 amino acids. It causes the 2-acyl ester bond to hydrolyze in a calcium-dependent manner, releasing lysophospholipids and free fatty acids. Additionally, PLA2 has the ability to cause membrane phospholipids to hydrolyze and to release some bioactive substances.

It is essential for a number of biological processes including cell division and signaling, anticoagulant, antiplatelet and hemolytic effects as well as harmful processes like cardiotoxicity, neurotoxicity, cytotoxicity, hypotensive and pro-inflammatory effects⁵⁸. Phospholipases have been shown to have anticancer and anti-angiogenic properties including acidic and basic PLA2s and synthetic peptides derived from PLA2 homologues¹⁵. Purified PLA2 from *Cerastes cerastes* and *Macrovipera lebetina*

transmediterranea venom was reported to inhibit the angiogenesis, migration and adhesion of cancerous cells^{8,89}.

An *in-vitro* study reported that Nigexin, a component of *Naja nigricollis* PLA2, shows notable cytotoxicity in cell cultures of several cancer types including neuroblastoma, epithelial and leukemia cancers²¹. Using various enzyme concentrations, the *Bothrops jararacussu* acidic PLA2 (BthA-I-PLA2), has exhibited anticancer effects on breast adenocarcinoma, Erlich ascitic tumor and leukemia T and the predicted cause of the anticancer activity is due to apoptosis by speeding up the phospholipids turnover⁶⁹. Neutrophils function as the initial line of defence at the site of damage, carrying out defence mechanisms such as phagocytosis, the generation of reactive oxygen species (ROS) and the creation of inflammatory mediators like cytokines⁸³. A study found that BaTX-II, an Asp49 PLA2 isolated from *Bothrops atrox*, caused neutrophils to produce hydrogen peroxide⁷⁵.

There are several processes involved in tumour angiogenesis^{32,35} and each one could be a target for the creation of anti-angiogenic and anti-metastatic treatments.

Numerous investigations have indicated that integrin signalling plays essential roles in controlling angiogenesis¹. Integrins are trans-membrane proteins, hetero-dimeric in nature and are responsible for cell-cell as well as cell-matrix interactions. A significant integrin-dependent tyrosine phosphorylated protein is called focal adhesion kinase (FAK).

Several cancer-promoting pathways linked to FAK have been responsible for the development of colorectal cancer⁴³. According to previous research, PLA2 of *Macrovipera lebetina* inhibits migration by targeting integrin proteins, in addition to abolishing adhesion of endothelial cells and angiogenesis⁹. The antitumor efficacy of the PLA2 isoform from *Bothrops moojeni* venom (BmPLA2) against human rhabdomyosarcoma (RD) and colorectal adenocarcinoma (Caco-2) cell lines was reported in some recent studies³³.

L-amino acid oxidase (LAAO): LAAO is a dimeric flavoenzyme that catalyses the oxidative deamination of L-amino acids into alpha-keto acids, hydrogen peroxide and ammonia through an intermediary amino acid. It is found in wide range of organisms like bacteria, algae, fungi, snakes and, mainly exists in homodimeric form with a cofactor which can be either flavin mononucleotide or flavin adenine dinucleotide³⁰. The study of LAAO of snake venom is pharmacologically important as it possesses diverse functions such as apoptosis induction, cytotoxicity, substrate preference, activation or inhibition of platelet aggregation, hemolysis, bactericidal activity, edema, hemorrhage induction and on the basis of these functions, it has been characterized¹⁵.

In this review, we have discussed the apoptotic property of this enzyme causing cell death of onco-cells. In the process of apoptosis, L-amino acid of snake venom origin unchains complex processes like apoptosis of vascular or endothelial cells causing hemorrhage³⁰. Similarly, several authors have reported this enzyme causing apoptosis in various cell lines such as human promyelocytic leukemia cells (HL-60), human embryonic cells (293T), human monocytic cells (MM6), human leukemia T cells and rat lymphocytic leukemia cells (L1210). The apoptotic impact was attributed to H₂O₂ produced by the oxidative process in the experiments used to assess the cytotoxic activity of LAAO.

It is found that even at low concentration of LAAO, there is high apoptosis induction in numerous mice cell lines⁸⁰. LAAO from snake venom catalyses the oxidative deamination reaction that transforms L-amino acid into alpha-keto acid, resulting in the production of hydrogen peroxide and ammonia^{61,66}. This hydrogen peroxide played major role in cytotoxic effect of the enzyme to host cells^{10,23,38}. Glycan molecules present on the enzymes help in its attachment, to the cell surface providing H₂O₂ to the cell and lead to apoptosis^{45,84}. According to early 3-D structural investigations of the viperid *Calloselasma rhodostoma*, histidine 223 of LAAO played key role in enzyme catalysis

help in the removal of a proton from alpha-amino group in the zwitter ion form¹⁹.

Lectin: Lectin is a polyvalent carbohydrate binding protein of non-immune origin, found in many vegetal and animal species and is known to influence cancer cells growth¹⁶. Snake venom lectin is a homodiameric protein with molecular mass of 16 kDa, which generally contains 135 amino acids²⁵. Lectins, with an inhibitory concentration of 50% acts as an effective growth inhibitor in pancreatic (CFPAC-1) and renal (Caki-1 and A-498) cancer cell lines⁶⁷. BJcuL's (a lectin purified from *Bothrops jararacussu* venom) cause cytotoxicity in tumor cells by changing cell adhesion property and triggering apoptosis in MKN45 and AGS gastric cancer cells. BJcuL may stimulate actin disintegration, speed up cellular detachment from the extracellular matrix and compete with extracellular matrix glycoproteins for attachment to the cell surface.

Lebecetin, a C-type lectin isolated from *Macrovipera lebetina* venom, has shown to exhibit anti-integrin action. It prevented many tumor cell lines from adhering to diverse adhesion substrates via integrin-mediated mechanisms. The migration, adhesion and invasion of malignant cells could all be prevented by this protein⁷³. Researchers demonstrated BIL, a galactoside-binding lectin derived from *Bothrops leucurus* venom, to have cytotoxic effect against tumor cells and to induce apoptosis in K562 cells.

Snake venom metalloproteinases (SVMP): SVMP is an important group of compounds found mostly in crotalid venom and viperid venom. SVMP can cause bleeding by altering blood coagulation or interacting with the major extracellular matrix constituents collagen, laminin and fibronectin¹⁵. SVMP are also referred to as zinc-proteases, multidomain proteins that have the capacity to produce physiologically active by products by autoproteolysis⁴⁴. SVMPs are categorized as belonging to -the mature P-I class, which only has a metalloprotease domain, the P-II class, which has a metalloprotease domain followed by a disintegrin domain, the P-III class, which is a metalloprotease with disintegrin-like and cysteine-rich domains, or the P-IV class, which is a heterotrimeric class of SVMPs and has an additional snake C-type lectin-like (snaclec) domain¹⁵.

MDC (metalloprotease/disintegrin-like/cysteine-rich) proteins are a subclass of high molecular weight SVMPs. The intricate bleeding process caused by these enzymes has prompted research into the interaction between the disintegrin domain and the major blood coagulation factors including platelets and integrins⁵. It has been demonstrated that several groups of matrix metalloproteases/ADAMs participate in the development of new vasculature during tumor progression. These multidomain proteins play a role in cell-cell and cell-extracellular matrix adhesion as well as cancer cell growth¹⁵. Because of their structural resemblance to mammalian MMPs (ADAM) and SVMPs (low and high

MMPs) including disintegrins, snake venom components have drawn attention from scientists as possible agents for treating animal malignancies⁸².

Disintegrins: Disintegrins are a group of synthesized or naturally occurring nontoxic and non-enzymatic low molecular weight (5–10 kDa) RGD-containing peptides and are crucial components in the majority of viperid and crotalid venoms. These substances are initially distinguished by their capacity to engage with the integrins IIb3, 51 and 31ls, which are articulated by a variety of cells including those implicated in tumor growth and proliferation³⁷. Based on binding studies, integrins and their subtypes have been identified as the main functional adhesion receptors on tumor cells. A research shows that salmosin, a disintegrin isolated from the venom of a Korean snake, causes apoptosis by directly binding to integrin and competing with the extracellular matrix⁴².

Disintegrins like Contortrostatin, Eritostatin, Rhodostomin, Obtustatin, Trigamin, Salmosin, Triflavin, Albolabrin and Echistatin have also shown the ability to potentially suppress tumor cells¹⁵. Disintegrins have the ability to interact with the extracellular matrix and are crucial in the development of angiogenesis and the metastatic spread of cancer.

This peptide has been shown to prevent the spread of ovarian cancer both *in vitro* and *in vivo* as well as the enlistment of blood vessels in tumors¹⁵. It prevents angiogenesis, invasion and migration of cancer cells⁸¹.

Snake Venom Serine protease (SVSP): SVSPs are complex and versatile enzymes and mainly act on hemostasis¹². They are widely distributed in viperid venoms, primarily in the form of monomeric glycoproteins between 26 and 67 kDa⁶⁸. SVSPs have demonstrated tremendous promise for the therapeutic and diagnostic usage of coagulant diseases. A study demonstrated that collinein-1, an SVSP that was isolated from the venom of *Crotalus durissus collilineatus*, decreased the viability of MCF7, human breast cancer cell line¹². Markland⁵⁴ showed that crotalase, a serine protease, reduces the proliferation of B16 melanoma cells in a test tube but has no cytotoxic or cytostatic effects on cells when administered to living organisms and it does not appreciably prolong animal survival.

The venom of *Macrovipera lebetinatransmediterranea*, a snake native to Tunisia, contained a unique PIVL inhibitor (Kunitz-type serine proteinase inhibitor) and has the capacity to precisely suppress trypsin function and ability to inhibit integrin allowing it to prevent tumour cells from adhering, migrating and invading⁶⁰.

Similarly, Vipegrin, a non-enzyme protein is another Kunitz-type serine proteinase inhibitor isolated from Russell's viper and impedes trypsin's catalytic activity. Vipegrin is cytotoxic to MCF7 human breast cancer cells and restricts its invasive property¹¹.

Development of anticancerous medicines from snake venom

Celtic Biotech (Ireland) is the only company developing novel candidate therapies from snake venom for the treatment of solid cancers and pain in humans. They have formulated CB24 (Crot toxin, a heterodimeric cytotoxic phospholipase complex protein) from venom of a South American rattlesnake *Crotalus durissus terrificus* and furthermore searching the anticancer possibilities of Cardiotoxin (CB-6, a therapeutic protein derived from cobra venom), CTC310 (combination of CB-24 and CB-6), Crotalin (CB-CDV) and Crotamine (CB-5, another anti-tumour peptide from the Viperidae family). The company has completed part II of phase I clinical trial of lead candidate CB24. In pre-clinical research, it was found to be highly toxic to several tumor cell types and in early clinical studies, a sizable fraction of cancer patients showed stabilized illness, partial responses and even complete responses. These product candidates, which are derived from specialized receptor binding proteins discovered in snake venom, may help cancer patients to increase survival, experience better quality of life and spend less money on therapy^{29,56,57}.

Conclusion

Crude venom and its components *viz.* PLA2, LAAO, lectin, SVMP, disintegrin, SVSP and several elements from snake venom have been recognised for their anticancer activity and some of them are being tested in clinical trials. This review briefly discussed specific anticancer compounds of snake origin and their mechanism of action at cellular, molecular and nuclear level. The mechanistic behaviour of snake venom compounds is directly or indirectly leading to lipid damaging activity and DNA damaging activity which in turn causes apoptosis. Various enzymatic compounds (PLA2, SVMP, SVSP and LAAO) and non-enzymatic compounds (disintegrin and lectins) of snake origin, act for the disruption of cytoskeleton of cells, which may be the possible reason to exploit them as anticancer agents.

In some studies, referring to melittin (from honeybee venom) and chlorotoxin (from scorpion venom) labelled with nanoparticles showed improved specificity, stability and therapeutic efficacy against cancer. Consequently, the snake venom toxins tagged with nanoparticles can be better approach to target the cancer cells. There is still a need for more preclinical and clinical research to prove the safety and effectiveness of snake venom anticancer peptide.

Acknowledgement

Authors would like to thank Maulana Azad National Institute of Technology (MANIT), Bhopal for providing resources and support for the study.

References

1. Akalu A., Cretu A. and Brooks P.C., Targeting integrins for the control of tumour angiogenesis, *Expert Opinion on Investigational Drugs*, **14**(12), 1475–1486 (2005)

2. Al-Asmari A.K., Riyasdeen A., Al-Shahrani M.H. and Islam M., Snake Venom Causes Apoptosis by Increasing the Reactive Oxygen Species in Colorectal and Breast Cancer Cell Lines, *Onco Targets and Therapy*, **9**, 6485–6498 (2016)

3. Almeida C.F., Amaral C., Augusto T.V., Correia-da-Silva G., Marques de Andrade C., Torqueti M.R. and Teixeira N., The anti-cancer potential of crototoxin in estrogen receptor-positive breast cancer: Its effects and mechanism of action, *Toxicon*, **200**, 69–77 (2021)

4. Al-Sadoon M.K., Abdel-Maksoud M.A., Rabah D.M. and Badr G., Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (*Walterinnesia aegyptia*) venom combined with silica nanoparticles: crosstalk between Bcl2 and caspase 3, *Cellular Physiology and Biochemistry*, **30**(3), 653–665 (2012)

5. Andrews R.K. and Berndt M.C., Snake venom modulators of platelet adhesion receptors and their ligands, *Toxicon*, **38**(6), 775–791 (2000)

6. Aranda-Souza M.A., Rossato F.A., Costa R.A., Figueira T.R., Castilho R.F., Guarniere M.C., Nunes E.S., Coelho L.C., Correia M.T. and Vercesi A.E., A lectin from *Bothrops leucurus* snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition, *Toxicon*, **82**, 97–103 (2014)

7. Azevedo F.V., Lopes D.S., Cirilo Gimenes S.N., Achê D.C., Vecchi L., Alves P.T., Guimarães Dde O., Rodrigues R.S., Goulart L.R., Rodrigues Vde M. and Yoneyama K.A., Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA₂ homologue from *Bothrops pauloensis* venom, *International Journal of Biological Macromolecules*, **82**, 671–677 (2016)

8. Bazaa A., Luis J., Srairi-Abid N., Kallech-Ziri O., Kessentini-Zouari R., Defilles C., Lissitzky J.C., El Ayeb M. and Marrakchi N., MVL-PLA2, a phospholipase A2 from *Macrovipera lebetina transmediterranea* venom, inhibits tumor cells adhesion and migration, *Matrix Biology*, **28**(4), 188–193 (2009)

9. Bazaa A., Pasquier E., Defilles C., Limam I., Kessentini-Zouari R., Kallech-Ziri O., El Battari A., Braguer D., El Ayeb M., Marrakchi N. and Luis J., MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions, *PLoS One*, **5**(4), e10124 (2010)

10. Bedoya-Medina J., Mendivil-Perez M., Rey-Suarez P., Jimenez-Del-Rio M., Núñez V. and Velez-Pardo C., L-amino acid oxidase isolated from *Micrurus mipartitus* snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism, *International Journal of Biological Macromolecules*, **134**, 1052–1062 (2019)

11. Bhattacharya N., Kolvekar N., Mondal S., Sarkar A. and Chakrabarty D., Biological activities of Vipegrin, an anti-adhesive Kunitz-type serine proteinase inhibitor purified from Russell's viper venom, *Toxicon*, **232**, 107213 (2023)

12. Boldrini-França J., Pinheiro-Junior E.L., Peigneur S., Pucca M.B., Cerni F.A., Borges R.J., Costa T.R., Carone S.E.I., Fontes M.R.M., Sampaio S.V., Arantes E.C. and Tytgat J., Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities, *Scientific Reports*, **10**(1), 4476 (2020)

13. Boncan J., The friendly side of snakes: can snake venom provide treatment for blood cancer?, *Pharmacology Matters* (2020)

14. Burin S.M., Cacemiro M.D.C., Cominal J.G., Grandis R.A., Machado A.R.T., Donaires F.S., Cintra A.C.O., Ambrosio L., Antunes L.M.G., Sampaio S.V. and de Castro F.A., *Bothrops moojeni* L-amino acid oxidase induces apoptosis and epigenetic modulation on Bcr-Abl+ cells, *Journal of Venomous Animals and Toxins including Tropical Diseases*, **26**, e20200123 (2020)

15. Calderon L.A., Sobrinho J.C., Zaqueo K.D., de Moura A.A., Grabner A.N., Mazzi M.V., Marcussi S., Nomizo A., Fernandes C.F., Zuliani J.P., Carvalho B.M., da Silva S.L., Stabeli R.G. and Soares A.M., Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy, *Bio Med Research International*, **2014**, 203639 (2014)

16. Camby I., Salmon I., Rombaut K., Pasteels J.L., Kiss R. and Danguy A., Influence of culture media and multidrug resistance on the wheat germ agglutinin (WGA) glycochemical expression of two human glioblastoma cell lines, *Anticancer Research*, **16**(4A), 1719–1725 (1996)

17. Carone S.E.I., Costa T.R., Burin S.M., Cintra A.C.O., Zoccal K.F., Bianchini F.J., Tucci L.F.F., Franco J.J., Torqueti M.R., Faccioli L.H., Albuquerque S., Castro F.A. and Sampaio S.V., A new L-amino acid oxidase from *Bothrops jararacussu* snake venom: Isolation, partial characterization and assessment of pro-apoptotic and antiprotozoal activities, *International Journal of Biological Macromolecules*, **103**, 25–35 (2017)

18. Cedro R.C.A., Menaldo D.L., Costa T.R., Zoccal K.F., Sartim M.A., Santos-Filho N.A., Faccioli L.H. and Sampaio S.V., Cytotoxic and inflammatory potential of a phospholipase A2 from *Bothrops jararaca* snake venom, *Journal of Venomous Animals and Toxins including Tropical Diseases*, **24**, 33 (2018)

19. Chen H.S., Wang Y.M., Huang W.T., Huang K.F. and Tsai I.H., Cloning, characterization and mutagenesis of Russell's viper venom L-amino acid oxidase: Insights into its catalytic mechanism, *Biochimie*, **94**(2), 335–344 (2012)

20. Chong H.P., Tan K.Y. and Tan C.H., Cytotoxicity of Snake Venoms and Cytotoxins from Two Southeast Asian Cobras (*Naja sumatrana*, *Naja kaouthia*): Exploration of Anticancer Potential, Selectivity and Cell Death Mechanism, *Frontiers in Molecular Biosciences*, **7**, 583587 (2020)

21. Chwetzoff S., Tsunasawa S., Sakiyama F. and Ménez A., Nigexine, a phospholipase A2 from cobra venom with cytotoxic properties not related to esterase activity: Purification, amino acid sequence and biological properties, *Journal of Biological Chemistry*, **264**(22), 13289–13297 (1989)

22. Corrêa M.C., Maria D.A., Moura-da-Silva A.M., Pizzocaro K.F. and Ruiz I.R.G., Inhibition of melanoma cells tumorigenicity by the snake venom toxin jararhagin, *Toxicon*, **40**(6), 739–748 (2002)

23. Costa T.R., Menaldo D.L., Zoccal K.F., Burin S.M., Aissa A.F., Castro F.A., Faccioli L.H., Greggi Antunes L.M. and

Sampaio S.V., CR-LAAO, an L-amino acid oxidase from *Calloselasma rhodostoma* venom, as a potential tool for developing novel immunotherapeutic strategies against cancer, *Scientific Reports*, **7**, 42673 (2017)

24. da Rocha R.G., Santos E.M.S., Tanaka-Azevedo A.M., Serino-Silva C., Souza M.G., Gomes E.S.B., Guimarães F.A.D., Silveira L.H., Santos S.H.S., de Paula A.M.B., Gomez R.S., Guimarães A.L.S. and Farias L.C., The antineoplastic potential of crototoxin isolated from *Crotalus durissus terrificus* snake venom on oral squamous cell carcinoma, *Toxicon*, **221**, 106965 (2023)

25. de Carvalho D.D., Marangoni S. and Novello J.C., Primary structure characterization of *Bothrops jararacussu* snake venom lectin, *Journal of Protein Chemistry*, **21**(1), 43–50 (2002)

26. de Carvalho D.D., Schmitmeier S., Novello J.C. and Markland F.S., Effect of BJcuL (a lectin from the venom of the snake *Bothrops jararacussu*) on adhesion and growth of tumor and endothelial cells, *Toxicon*, **39**(10), 1471–1476 (2001)

27. de Vasconcelos Azevedo F.V.P., Zóia M.A.P., Lopes D.S., Gimenes S.N., Vecchi L., Alves P.T., Rodrigues R.S., Silva A.C.A., Yoneyama K.A.G., Goulart L.R. and de Melo Rodrigues V., Antitumor and antimetastatic effects of PLA2-BthTX-II from *Bothrops jararacussu* venom on human breast cancer cells, *International Journal of Biological Macromolecules*, **135**, 261–273 (2019)

28. Debatin K.M. and Krammer P.H., Death receptors in chemotherapy and cancer, *Oncogene*, **23**(16), 2950–2966 (2004)

29. Delgado M.G., Paul G., Bray D.H., Delgado F.M., Spano J.P., Idbah A., Reid P.F., Benlhassan K., Diaw C. and Khayat D., Abstract CT071: Continuous i.v. Crototoxin in advanced cancer: Intra-patient dose escalation, *Cancer Research*, **78**, CT071 (2018)

30. Du X.Y. and Clemetson K.J., Snake venom L-amino acid oxidases, *Toxicon*, **40**(6), 659–665 (2002)

31. Ebrahim K., Vatanpour H., Zare A., Shirazi F.H. and Nakhjavani M., Anticancer Activity of Caspian Cobra (*Naja naja oxiana*) snake Venom in Human Cancer Cell Lines Via Induction of Apoptosis, *Iranian Journal of Pharmaceutical Research*, **15**, 101–112 (2016)

32. Folkman J., Anti-angiogenesis: new concept for therapy of solid tumors, *Annals of Surgery*, **175**(3), 409–416 (1972)

33. Frihling B.E.F., Boleti A.P.A., de Oliveira C.F.R., Sanches S.C., Cardoso P.H.O., Verbiscer N., Macedo M.L.R., Rita P.H.S., Carvalho C.M.E. and Migliolo L., Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake *Bothrops moojeni*, *Pharmaceuticals*, **15**(6), 724 (2022)

34. Gabriel L.M., Sanchez E.F., Silva S.G. and Santos R.G., Tumor cytotoxicity of leucurolysin-B, a P-III snake venom metalloproteinase from *Bothrops leucurus*, *J. Venom. Anim. Toxins Trop. Dis.*, **18**(1), 24–33 (2012)

35. Garmy-Susini B. and Varner J.A., Roles of integrins in tumor angiogenesis and lymphangiogenesis, *Lymphatic Research and Biology*, **6**(3-4), 155–163 (2008)

36. Gomes A., Bhattacharjee P., Mishra R., Biswas A.K., Dasgupta S.C. and Giri B., Anticancer potential of animal venoms and toxins, *Indian Journal of Experimental Biology*, **48**(2), 93–103 (2010)

37. Gould R.J., Polokoff M.A., Friedman P.A., Huang T.F., Holt J.C., Cook J.J. and Niewiarowski S., Disintegrins: a family of integrin inhibitory proteins from viper venoms, *Society for Experimental Biology and Medicine*, **195**(2), 168–171 (1990)

38. Guo C., Liu S., Dong P., Zhao D., Wang C., Tao Z. and Sun M.Z., Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway, *Scientific Reports*, **5**, 18215 (2015)

39. Gutiérrez J.M. and Lomonte B., Phospholipase A2 myotoxins from Bothrops snake venoms, *Toxicon*, **33**(11), 1405–1424 (1995)

40. Hammouda M.B., Montenegro M.F., Sánchez-Del-Campo L., Zakraoui O., Aloui Z., Riahi-Chebbi I., Karoui H., Rodríguez-López J.N. and Essafi-Benkhadir K., Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells, *Toxins*, **8**(7), 206 (2016)

41. Hammouda M.B., Riahi-Chebbi I., Souid S., Othman H., Aloui Z., Srairi-Abid N., Karoui H., Gasmi A., Maguenat E.M., Wells T.N.C., Clemetson K.J., Rodríguez-López J.N. and Essafi-Benkhadir K., Macrovipecetin, a C-type lectin from Macrovipecta lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin, *Biochimica et Biophysica Acta - General Subjects*, **1862**(3), 600–614 (2018)

42. Hong S.Y., Lee H., You W.K., Chung K.H., Kim D.S. and Song K., The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells, *Biochemical and Biophysical Research Communications*, **302**(3), 502–508 (2003)

43. Jeong K.Y., Inhibiting focal adhesion kinase: A potential target for enhancing therapeutic efficacy in colorectal cancer therapy, *World Journal of Gastrointestinal Oncology*, **10**(10), 290–292 (2018)

44. Jia L.G., Shimokawa K., Bjarnason J.B. and Fox J.W., Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins, *Toxicon*, **34**(11-12), 1269–1276 (1996)

45. Kang T.S., Georgieva D., Genov N., Murakami M.T., Sinha M., Kumar R.P., Kaur P., Kumar S., Dey S., Sharma S., Vrielink A., Betzel C., Takeda S., Arni R.K., Singh T.P. and Kini R.M., Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis, *The FEBS Journal*, **278**(23), 4544–4576 (2011)

46. Kerkkamp H., Bagowski C., Kool J., van Soolingen B., Vonk F.J. and Vlecken D., Whole snake venoms: Cytotoxic, antimetastatic and antiangiogenic properties, *Toxicon*, **150**, 39–49 (2018)

47. Lafnoune A., Lee S.Y., Heo J.Y., Gourja I., Darkaoui B., Abdelkafi-Koubaa Z., Chgoury F., Daoudi K., Chakir S., Cadi R., Mounaji K., Srairi-Abid N., Marrakchi N., Shum D., Seo H.R. and Oukkache N., Anti-Cancer Effect of Moroccan Cobra *Naja haje*

Venom and Its Fractions against Hepatocellular Carcinoma in 3D Cell Culture, *Toxins*, **13**(6), 402 (2021)

48. Li L., Huang J. and Lin Y., Snake Venoms in Cancer Therapy: Past, Present and Future, *Toxins*, **10**(9), 346 (2018)

49. Liu C.Z. and Huang T.F., Crovidisin, a collagen-binding protein isolated from snake venom of *Crotalus viridis*, prevents platelet-collagen interaction, *Archives of Biochemistry and Biophysics*, **337**(2), 291–299 (1997)

50. Lucena S.E., Jia Y., Soto J.G., Parral J., Cantu E., Brannon J., Lardner K., Ramos C.J., Seoane A.I. and Sánchez E.E., Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (*Crotalus viridis viridis*), *Toxicon*, **60**(1), 31–39 (2012)

51. Lucena S., Sanchez E.E. and Perez J.C., Anti-metastatic activity of the recombinant disintegrin, r-mojastin 1, from the Mohave rattlesnake, *Toxicon*, **57**(5), 794–802 (2011)

52. Machado A.R.T., Aissa A.F., Ribeiro D.L., Costa T.R., Ferreira R.S., Sampaio S.V. and Antunes L.M.G., Cytotoxic, genotoxic and oxidative stress-inducing effect of an l-amino acid oxidase isolated from *Bothrops jararacussu* venom in a co-culture model of HepG2 and HUVEC cells, *International Journal of Biological Macromolecules*, **127**, 425–432 (2019)

53. Malekara E., Pazhouhi M., Rashidi I. and Jalili C., Anti-proliferative and cytotoxic effect of Iranian snake (*Vipera raddei kurdistanica*) venom on human breast cancer cells via reactive oxygen species-mediated apoptosis, *Research in Pharmaceutical Sciences*, **15**(1), 76–86 (2020)

54. Markland F.S., Antitumor action of crotalase, a defibrinogenating snake venom enzyme, *Seminars in Thrombosis and Hemostasis*, **12**(4), 284–290 (1986)

55. McCue M., Enzyme activities and biological functions of snake venoms, *Applied Herpetology*, **2**, 109–123 (2005)

56. Medioni J., Brizard M., Elaidi R., Reid P.F., Benlhassan K. and Bray D., Abstract CT070: Innovative design for a phase I trial with intra-patient dose escalation: The Crotoxin study, *Cancer Research*, **78**, CT070 (2018)

57. Medioni J., Brizard M., Elaidi R., Reid P.F., Benlhassan K. and Bray D., Innovative design for a phase 1 trial with intra-patient dose escalation: The Crotoxin study, *Contemporary Clinical Trials Communications*, **7**, 186–188 (2017)

58. Moga M.A., Dimienescu O.G., Arvătescu C.A., Iftene P. and Pleş, L., Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer, *Molecules*, **23**(3), 692 (2018)

59. Moridikia A., Zargan J., Sobati H., Goodarzi H.R. and Hajinourmohamadi A., Anticancer and antibacterial effects of Iranian viper (*Vipera latifii*) venom; an *in-vitro* study, *Journal of Cellular Physiology*, **233**(9), 6790–6797 (2018)

60. Morjen M., Kallech-Ziri O., Bazaar A., Othman H., Mabrouk K., Zouari-Kessentini R., Sanz L., Calvete J.J., Srairi-Abid N., El Ayeb M., Luis J. and Marrakchi N., PIVL, a new serine protease inhibitor from *Macrovipera lebetina transmediterranea* venom, impairs motility of human glioblastoma cells, *Matrix Biology*, **32**(1), 52–62 (2013)

61. Moustafa I.M., Foster S., Lyubimov A.Y. and Vrielink A., Crystal structure of LAAO from *Calloselasma rhodostoma* with an L-phenylalanine substrate: insights into structure and mechanism, *Journal of Molecular Biology*, **364**(5), 991–1002 (2006)

62. Nikodijević D.D., Jovankić J.V., Cvetković D.M., Andđelković M.Z., Nikežić A.G. and Milutinović M.G., L-amino acid oxidase from snake venom: Biotransformation and induction of apoptosis in human colon cancer cells, *European Journal of Pharmacology*, **910**, 174466 (2021)

63. Oliveira A.L., Viegas M.F., da Silva S.L., Soares A.M., Ramos M.J. and Fernandes P.A., The chemistry of snake venom and its medicinal potential, *Nature Reviews Chemistry*, **6**(7), 451–469 (2022)

64. Oliveira I.S., Manzini R.V., Ferreira I.G., Cardoso I.A., Bordon K.C.F., Machado A.R.T., Antunes L.M.G., Rosa J.C. and Arantes E.C., Cell migration inhibition activity of a non-RGD disintegrin from *Crotalus durissus collilineatus* venom, *Journal of Venomous Animals and Toxins including Tropical Diseases*, **24**, 28 (2018)

65. Pathan J., Mondal S., Sarkar A. and Chakrabarty D., Dabiolectin, a C-type lectin from Russell's viper venom induces cytoskeletal damage and apoptosis in human lung cancer cells *in vitro*, *Toxicon*, **127**, 11–21 (2017)

66. Pawelek P.D., Cheah J., Coulombe R., Macheroux P., Ghisla S. and Vrielink A., The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site, *The EMBO Journal*, **19**(16), 4204–4215 (2000)

67. Pereira-Bittencourt M., Carvalho D.D., Gagliardi A.R. and Collins D.C., The effect of a lectin from the venom of the snake, *Bothrops jararacussu*, on tumor cell proliferation, *Anticancer Research*, **19**(5B), 4023–4025 (1999)

68. Rawlings N.D., Waller M., Barrett A.J. and Bateman A., MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, *Nucleic Acids Research*, **42**, D503–D509 (2014)

69. Roberto P.G., Kashima S., Marcussi S., Pereira J.O., Astolfi-Filho S., Nomizo A., Giglio J.R., Fontes M.R., Soares A.M. and França S.C., Cloning and Identification of a Complete cDNA Coding for a Bactericidal and Antitumoral Acidic Phospholipase A2 from *Bothrops jararacussu* Venom, *The Protein Journal*, **23**(4), 273–285 (2004)

70. Roy P. and Saikia B., Cancer and cure: A critical analysis, *Indian J. Cancer*, **53**(3), 441–442 (2016)

71. Salama W.H., Ibrahim N.M., El Hakim A.E., Bassuiny R.I., Mohamed M.M., Mousa F.M. and Ali M.M., l-Amino acid oxidase from Cerastes vipera snake venom: Isolation, characterization and biological effects on bacteria and tumor cell lines, *Toxicon*, **150**, 270–279 (2018)

72. Sánchez E.E., Rodríguez-Acosta A., Palomar R., Lucena S.E., Bashir S., Soto J.G. and Pérez J.C., Colombistatin: a disintegrin isolated from the venom of the South American snake (*Bothrops colombiensis*) that effectively inhibits platelet aggregation and SK-

Mel-28 cell adhesion, *Archives of Toxicology*, **83**(3), 271–279 (2009)

73. Sarray S., Srairi N., Luis J., Marvaldi J., El Ayeb M. and Marrakchi N., Lebecetin, a C-lectin protein from the venom of *Macrovipera lebetina* that inhibits platelet aggregation and adhesion of cancerous cells, *Haemostasis*, **31**(3-6), 173–176 (2001)

74. Sarray S., Delamarre E., Marvaldi J., El Ayeb M., Marrakchi N. and Luis J., Lebecetin and lebecetin, two C-type lectins from snake venom, inhibit alpha5beta1 and alphaV-containing integrins, *Matrix Biology*, **26**(4), 306–313 (2007)

75. Setúbal S.D.S., Pontes A.S., Nery N.M., Rego C.M.A., Santana H.M., de Lima A.M., Boeno C.N., Paloschi M.V., Soares A.M. and Zuliani J.P., Human neutrophils functionality under effect of an Asp49 phospholipase A2 isolated from *Bothrops atrox* venom, *Toxicon X*, **6**, 100032 (2020)

76. Shahbazi B., Najafabadi Z.S., Goudarzi H., Sajadi M., Tahoori F. and Bagheri M., Cytotoxic effects of *Pseudocerastes persicus* venom and its HPLC fractions on lung cancer cells, *Journal of Venomous Animals and Toxins including Tropical Diseases*, **25**, e20190009 (2019)

77. Shanbhag V.K., Applications of snake venoms in treatment of cancer, *Asian Pacific Journal of Tropical Biomedicine*, **5**(4), 275–276 (2015)

78. Singh P., Yasir M., Khare R., Tripathi M. and Shrivastava R., Snake Venom Phospholipase A 2 and its Natural Inhibitors, *Natural Product Sciences*, **26**(3), 259–267 (2020)

79. Song J.K., Jo M.R., Park M.H., Song H.S., An B.J., Song M.J., Han S.B. and Hong J.T., Cell growth inhibition and induction of apoptosis by snake venom toxin in ovarian cancer cell via inactivation of nuclear factor κB and signal transducer and activator of transcription 3, *Archives of Pharmacal Research*, **35**(5), 867–876 (2012)

80. Suhr S.M. and Kim D.S., Identification of the snake venom substance that induces apoptosis, *Biochemical and Biophysical Research Communications*, **224**(1), 134–139 (1996)

81. Tan C.H., Liew J.L., Navanesan S., Sim K.S., Tan N.H. and Tan K.Y., Cytotoxic and anticancer properties of the Malaysian

mangrove pit viper (*Trimeresurus purpureomaculatus*) venom and its disintegrin (purpureomaculin), *Journal of Venomous Animals and Toxins including Tropical Diseases*, **26**, e20200013 (2020)

82. Tang C.H., Yang R.S., Liu C.Z., Huang T.F. and Fu W.M., Differential susceptibility of osteosarcoma cells and primary osteoblasts to cell detachment caused by snake venom metalloproteinase protein, *Toxicon*, **43**(1), 11–20 (2004)

83. Timár C.I., Lőrincz A.M. and Ligi E., Changing world of neutrophils, *Pflügers Archiv - European Journal of Physiology*, **465**(11), 1521–1533 (2013)

84. Torii S., Naito M. and Tsuruo T., Apoxin I, a Novel Apoptosis-inducing Factor with L-Amino Acid Oxidase Activity Purified from Western Diamondback Rattlesnake Venom, *Journal of Biological Chemistry*, **272**(14), 9539–9542 (1997)

85. Tra Dong-Phuong, To Thi Hien and Quach Ngo Diem Phuong, The effect of cadmium on the growth, tolerance and cadmium-accumulation of some ornamental plants in Vietnam, *Res. J. Chem. Environ.*, **27**(8), 16-21 (2023)

86. Vyas V.K., Brahmbhatt K., Bhatt H. and Parmar U., Therapeutic potential of snake venom in cancer therapy: current perspectives, *Asian Pacific Journal of Tropical Biomedicine*, **3**(2), 156–162 (2013)

87. Xiong Y., He Q., Yu X., Li B. and Song Z., The anti-ovarian carcinoma activity of L-amino acid oxidase from *Crotalus adamanteus* venom *in vivo* and *in vitro*, *Medical Oncology*, **39**(8), 112 (2022)

88. Yalcin H.T., Ozen M.O., Gocmen B. and Nalbantsoy A., Effect of Ottoman Viper (*Montivipera xanthina* (Gray, 1849)) Venom on Various Cancer Cells and on Microorganisms, *Cytotechnology*, **66**(1), 87–94 (2014)

89. Zouari-Kessentini R., Luis J., Karray A., Kallech-Ziri O., Srairi-Abid N., Bazaa A., Loret E., Bezzine S., El Ayeb M. and Marrakchi N., Two purified and characterized phospholipases A2 from *Cerastes cerastes* venom, that inhibit cancerous cell adhesion and migration, *Toxicon*, **53**(4), 444–453 (2009).

(Received 22nd March 2024, accepted 24th May 2024)